Robust and sparse bridge regression

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust and sparse bridge regression

It is known that when there are heavy-tailed errors or outliers in the response, the least squares methods may fail to produce a reliable estimator. In this paper, we proposed a generalized Huber criterion which is highly flexible and robust for large errors. We applied the new criterion to the bridge regression family, called robust and sparse bridge regression (RSBR). However, to get the RSBR...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Robust and Sparse Regression via γ-Divergence

In high-dimensional data, many sparse regression methods have been proposed. However, they may not be robust against outliers. Recently, the use of density power weight has been studied for robust parameter estimation, and the corresponding divergences have been discussed. One such divergence is the γ-divergence, and the robust estimator using the γ-divergence is known for having a strong robus...

متن کامل

Hyperspectral Unmixing with Robust Collaborative Sparse Regression

Chang Li 1, Yong Ma 2,∗, Xiaoguang Mei 2, Chengyin Liu 1 and Jiayi Ma 2 1 School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (C.L.); [email protected] (C.L.) 2 Electronic Information School, Wuhan University, Wuhan 430072, China; [email protected] (X.M.); [email protected] (J.M.) * Corresponden...

متن کامل

Robust Sparse Regression under Adversarial Corruption

We consider high dimensional sparse regression with arbitrary – possibly, severe or coordinated – errors in the covariates matrix. We are interested in understanding how many corruptions we can tolerate, while identifying the correct support. To the best of our knowledge, neither standard outlier rejection techniques, nor recently developed robust regression algorithms (that focus only on corru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics and Its Interface

سال: 2009

ISSN: 1938-7989,1938-7997

DOI: 10.4310/sii.2009.v2.n4.a9